From Pixels to Information: Remote Sensing for Planning

May 2008

Matthew Bobo Remote Sensing Specialist National Operations Center

What is Remote Sensing?

 Science and Art of measuring an object, area, or phenomena without direct contact with that object

Context

The Ideal Remote Sensing System

Image Interpretation Elements

- Size
- Shape
- Tone/Color
- Texture
- Shadow
- Association
- Pattern

Source: USFS RSAC

We use each of these image attributes, often subconsciously, to derive information about features in an image, i.e., Photo Interpretation...

Traditional classifiers only use Tone/Color to extract features from imagery.

New technologies use some form of Size, Shape, Tone/Color, and Texture for image feature extraction...

How does it help planning?

- Baseline Data
 - Vegetation Mapping
 - Update Vector Layers
- Monitoring / Change Detection
- Decision Support Tool
 - Treatment Effectiveness
- Support for Cumulative Effects Analyzes
- Visual Documentation
- Climate Change

Monitoring change over time

- Traditionally the majority of BLM's monitoring activities have been field-based.
 - Provides great site-specific data
 - Difficult to extrapolate these data to coarser scales
 - Monitoring sites are infrequently visited
 - Driven by permitting not ecology
- Need to develop sampling strategies that allow BLM to effectively monitor multiple scales.
- Remote sensing provides data to fill-in the gaps both spatially and temporally

Remote Sensing Project Requirements

- Tripartisan Perspectives
 - Resource Specialist
 - Manager
 - Remote Sensing Geek
- Balance needs to be found
- Define expectations

The Resource Specialist Perspective

What to measure

- What are the issues to be addressed
- What resources are involved
- Extent of resource
- Goals/Objectives

How to measure

- Indicators
- Mapping verses Sampling
- Accuracy/Detail Requirements
- Scale

When to measure

- Phenology
- Triggers

The Manager Perspective

Economics

- Costs
- Benefits
- Long-term verses Short-term
- Risk tolerance

Staffing

- Training
- Availability
- Commitment
- Partnerships

Implementation

- Single Inventory v. Monitoring
- Action Thresholds
- Existing Data

The Remote Sensing Geek Perspective

Spatial

- Pixel Resolution
- Swath Width
- Data Volume

Temporal

- Return Interval
- Seasonality
- Imaging Frequency

Spectral

- Number of bands
- Bandwidth

Landsat 30m

National Operations Center
Division of Resource Services

Mapping Surface Disturbance

- Inventory of disturbance at multiple resolutions
- Habitat fragmentation
- Cumulative impact
- Monitor to detect change
- Numerous field offices are exploring remote sensing options
 - WO, NOC, SO, FO need to ensure consistency

White River Field Office

- Developing Plan Amendment to Monitor Oil/Gas Development
- Need to quantify acres of disturbance per year
- Want to track reclamation progress
- 600,000 acres
- Working with AIM, NOC, and 3rd Parties to develop a scientifically sound and defensible monitoring protocol

The Resource Specialist Perspective

What to measure

- Surface disturbance, Vegetation
- Annual grasses

How to measure

- Remote Sensing
- Wall-to-Wall Mapping
- Percent cover of indicator grasses

When to measure

- Surface Disturbance Annually
- Vegetation intra-annual

The Manager Perspective

Economics

- Funds available from FO, AIM
- Identifying long-term funds
- Setting aside money for imagery

Staffing

- One GIS Staff person (1 pending)
- In-house staff and partners for fieldwork
- Working with 3rd Party and NOC for plan development and training

Implementation

- Long-term Monitoring
- Tied to Plan Amendment

The Remote Sensing Geek Perspective

Spatial

- Need to capture two-track roads
- Grasses and Shrubs

Temporal

- NAIP every 3 years
- RapidEye multiple times per year
- Capturing phenology of grasses is key

Spectral

Vegetation requires infrared

Remote Sensing Systems

Domains:

Spatial:

0.5 m-5m

10-30m

100-500m

1k-8km

Temporal:

0.5 hr

Daily

Weekly

Bimonthly

Spectral:

Panchromatic (1)

Multispectral (2-7)

Hyperspectral (10s-100s)

Imagery Comparisons

Remote Sensing Resolution

High Temporal Frequency Data

Normalized Difference Vegetation Index = NIR – Red / NIR+ Red

MODIS Landscape Performance

2007 Pre-Murphy Complex Fire

Anomalies in the Northeast Align with the Clover (7/15/05) and Sailor Cap (8/25/2006) Fires

Most anomalies align with fence lines

Phenological Signatures Comparison Between Two Sites

Source: J. Tagestad - Pacific Northwest National Laboratory

			A-201	
Spectral Bands	 Blue 440 – 510 nm Green 520 – 590 nm Red 630 – 685 nm 	Tile Size (scence)	• 25 x 25 km	
	• Red Edge 690 – 730 nm • NIR 760 – 850 nm	Swath Width / Length	• 77 km x 1500 km	
Satellite Altitude	• 630 km	Revisit Time	• Daily	
Camera Angle	• +/- 25 degrees	Equator Crossing Time	• 11:00 am	
Pixel Size, (orthorectified)	• 5 m	Image Capture Capacity	4 Million sq.km daily	

Satellite Specifications

Price = ~\$1.25/km2

Remote Sensing Resolution

2048 km swath

Vegetation Datasets

- National Land Cover Dataset (NLCD)
 - www.mrlc.gov
 - Overall: 38-70% @ Anderson Lv 2
 - Anderson Lv 1 74-85%
- LANDFIRE
 - www.landfire.gov
 - Great Basin 50% Overall; 67% using SAF/SRM
- ReGAP Northwest & Southwest
- SAGEMAP
 - Combines a sticthed product of multiple vegetation classification efforts

NLCD 2001 Land Cover Classes

- Water
 - Open Water
 - Perennial Ice/Snow
- Developed
 - Developed, Open Space
 - Low Intensity
 - Medium Intensity
 - High Intensity
- Forests
 - Deciduous
 - Evergreen
 - Mixed
- Barren(Rock/Sand/Clay)
- Non-Vascular
 - Lichens*
 - Moss*

- Shrubland
 - Dwarf Shrub*
 - Shrub
- Grasslands/Herbaceous
 - Herbaceous
 - Sedge Herbaceous*
- Agriculture
 - Pasture/Hay
 - Cultivated Crops
- Wetlands
 - Woody Wetlands
 - Emergent Herbaceous Wetlands

* Alaska only

What is LANDFIRE?

- National Effort/Multi-Agency
- Primary Focus: Develop consistent fuels and vegetation data across the nation
- Uses data from MRLC
 - Landsat-based
- Not intended for local level analysis
- Develop nationally consistent 30m map data of vegetation, wildland fuels, and ecosystem fire regime conditions

LANDFIRE - Products

LANDFIRE Vegetation Classification System: Ecological Systems

Ecological Systems: an additional floristic level in the US-NVC hierarchy

Formation Class

Woodland

Formation Subclass

Evergreen Woodland

Formation Group

Temperate or Subpolar needle-leaved...

Formation Subgroup

Natural vs. Cultural

Formation

Rounded-crowned...

Ecological Systems

Alliance

Pinus palustris / Quercus spp. Woodland Alliance

Association

Pinus palustris - Pinus taeda / Quercus geminata - Quercus hemisphaerica - Osmanthus americanus var. americanus / Aristida stricta Woodland

LANDFIRE Vegetation Classification System

NatureServe's Ecological Systems

Designed for mid-scale mapping of existing vegetation

Nationally consistent and can be applied nationwide

Provided a template which could be adapted to for mapping potential vegetation

Links to National Vegetation Classification System

LANDFIRE Accuracy

Super Zone	Ecological System Agreement (%)	# of EVT Classes	Similarity Class Agreement (%)	# of EVT Similarity Classes Assessed	SAF/SRM Agreement (%)	# of SAF/SRM Classes Assessed
Great Basin	50	56	63	22	67	36

Remote Sensing and Fieldwork

Not a refieldwo

Remote data is

Extend

Increas

Access

Good f

ReGap

Northwest

Southwest

http://gapanalysis.nbii.gov/portal/server.pt

Use the Best Information Available... **National Operations Center National Planning Conference Division of Resource Services** March 2009 PUBLIC LANDS

Idaho BLM Land Cover Data Standard

- Develop Idaho BLM land cover classification system consistent with NVCS
- Provide a glossary of terms.
- Define mapping standards for RMPs consistent with national standards.
 - Accuracy, minimum map units, etc.
- Provide directions for land cover classification use for RMPs.
 - Define appropriate classification thematic scale for RMP map.
 - Explain how to handle "special" fine-scale vegetation communities (e.g., aspen communities).

Why develop a standard?

- Communication: internal and external
- Inventory: point-in-time description
- Monitoring: measuring changes over time
- Aggregating information across admin. boundaries

Idaho BLM Land Cover Classification Scheme

Scale	Planning Use	Idaho BLM Land Cover Categories	
Broad-Scale	State-wide Plans	Group	
	State-wide Plans / RMP	Class	
	RMP	Division	
	RMP / Activity Plans / Project Plans	Sub-Division	
	Activity Plans / Project Plans	Ecological System	
	Project Plans	Alliance	
Fine Scale	Site Plans	Association	

More than one way to skin a cat...

mapping vegetation isn't just about classification.

Remote Sensing Resolution

2048 km swath

Continuous Field Mapping (CFM)

- Variation on the traditional classification mapping typically done using remote sensing data.
- Mapping variables based on their percent cover.
- Enables the ability to monitor within class vegetative changes.
 - Percent shrub, bare ground, litter, herbaceous, etc.
- Multi-scale by design

2.4m R-G-B-Nir Quickbird Scene

Prediction accuracies at The Quickbird scale

National Planning Conference March 2009

Natior Divisi⊂

Sensor	Variable	Model R	N	R	R ²	RMSE
Quickbird	sage	0.90	61	0.92	0.85	2.99
Quickbird	shrub	0.89	61	0.91	0.82	2.95
Quickbird	bare	0.91	61	0.94	0.89	6.38
Quickbird	herbaceous	0.80	61	0.88	0.77	5.02
Quickbird	litter	0.86	61	0.90	0.82	4.36
Quickbird	big sage	0.89	61	0.9	0.84	3.04
Quickbird	wyomingensis	0.85	61	0.9	0.75	3.71
Quickbird	h_shrub	0.85	61	0.9	0.79	5.07

Digital Globe

- Quickbird (2001)
 - 60 cm Pan; 2.4 m
 Multispectral (VISNIR)
 - 4 Bands
 - 23 m CE90
- WorldView-1 (2008)
 - 50 cm Pan
 - Stereo Capability
 - 6.5 m CE90
- WorldView-2 (2009)
 - 46 cm Pan; 1.8 mMultispectral
 - 8 Bands
 - 12 m CE90
- Cost = $\sim 25 / \text{km}^2$

Billings Field Office

- In the midst of their RMP
- Contracted with USGS to develop CFMs for majority of planning area
- Will use to provide baseline vegetation data
- Primarily intended as a monitoring tool process will be repeated periodically to provide data for quantifying if vegetation goals are being met.

Effectiveness of Treatments

- Map past treatments (i.e. prescribed fire, seeding)
- Cumulative effect of disturbance (i.e. invasives, fragmentation)
- Cumulative effect of treatments (i.e. connectivity, fire regime)

Detecting Annual Grasses

Remote Sensing Resolution

2048 km swath

VLSA for Natural Resource Management

March 2009

Division of Resource Services

SYSTEM OF

PUBLIC LANDS

Remote Sensing as Sampling

Cost Comparison:

- Traditional Monitoring
 - 27 plots in 50,000 acre project area (Medicine Lodge)
 - Most allotments have 1 study plot per pasture
 - 2-3 plots per day
 - 4 hours per plot site including travel time and post processing
 - Typically 15 20 sites visited yearly
 - \$74.80 / site (GS-8, monitoring tech)
- Aerial Monitoring
 - One time funded monitoring project (Medicine Lodge) \$25K
 - 1500 (3000 photos) photographic locations per 50,000 Acres
 - Flight Time = 6 hours
 - Analysis using existing software and verified with traditional data
 - \$16.67 / site (preflight planning, flight, post processing, travel and per diem)
 - UAV purchase (50,000 acres/year with 3000 photo locations)
 - 1st Year: \$4.87 / site (\$12,000 plus ½ WM preflight planning, flight, post processing)
 - 2nd Year: \$2.87 / site (\$6,000 plus ½ WM preflight planning, flight, post processing)
 - 3rd Year: \$1.87 / site (\$3,000 plus ½ WM preflight planning, flight, post processing)

PUBLIC LANDS

Soil Monitoring

Division of Resource Services

PUBLIC LANDS

Powder River Basin Remote Sensing

- Multi-Agency effort to study the impacts of Coalbed Methane Development on the aquatic/riparian habitats
- Quantify in-stream habitats
 - Mapping verses Sampling
- Monitor in-stream habitats under different flow rates
 - Intra-annual and Inter-annual
- Derived measurements of channel properties
- Map riparian vegetation and invasive species
- Test new methods for developing stereo models from Very Large Scale Aerial (VLSA) photography

National Operations Center
Division of Resource Services

registered imagery

Some Available Resources

IP Software Tools

- Imagine 9.1 Available; 9.2 in testing
- Feature Analyst 4.1 (4 ArcGIS; 1 Imagine)
- Image Analysis for ArcGIS 9.2
- ENVI 4.5 (2 licenses)
- Definiens Developer 7 (1 license)
- Image Server
- Leica Photogrammetry Suite 9.2
- Stereo Analyst for ArcGIS 9.2 in testing
- ILMNIRM3AP9

Image Segmentation

Remote Sensing Applications Center (RSAC)

- US Forest Service Research Center
- http://fsweb.rsac.fs.fed.us/
- Great resource for remote sensing information
- Seamless 1-meter orthophotography for the US
- Requires client installed in ArcMap
- 166.2.126.235

Aerial Photography Spatial Index (APSI)

- Citrix Application Need to be added to permissions list
 - https://citrixnr.blm.doi.net.
- ArcMap document to search for historical aerial photography collected by the BLM
- Approximately 600,000 frames
- Public Access: GeoCommunicator
- Internal: Translated into ArcGIS Server

Our Changing Landscape

Landsat

- Landsat 1, 2, and 3 MultiSpectral Scanner (MSS) 4
 bands, 80 meter spatial resolution (1972-1983).
- Landsat 3, 4, and 5 carried both MSS and Thematic Mapper (TM) sensors (Landsat 4 1982-1992, Landsat 5 1984-present).
- Landsat 6 occupies a sub-aqueous orbit
 Landsat 7 carries the Enhanced Thematic Mapper Plus (ETM+), with 30m visible and IR bands, a 60m thermal band, and a 15m panchromatic band (185 km swath width) (1998).
- Landsat 8 (LCDM) planned for 2011

Glovis

- Search variety of image datasets maintained by USGS
- Several collections are free to download
- Tool used to distribute all free Landsat data

http://glovis.usgs.gov

CIDR

- http://cidr.cr.usgs. gov/main.php
- Mechanism for acquiring free high resolution imagery
- NOC can assist with defining requirements

PUBLIC LANDS

National Agricultural Imagery Program

- New Collection Schedule – Every 3 yrs
- WO secured funds for states
- Only AG lands guaranteed
- 15% premium for 4-Digital Orthos
- ~\$1.4 million for Idaho
 - \$215/DOQQ

LIDAR

LASER-SCANNING

- LIDAR = Light Detection and Ranging
- Active sensing: can collect at night
- Timing of pulse gives elevation (DEM)
- Magnitude of return pulse gives intensity image (DOQ)
- Minimum of <u>thousands</u> of pulses per second (KhZ+)
- Multiple returns potentially from each transmitted pulse
- Costs are widely variable depending on size and complexity of project
 - Low of \$0.82/acre

National Operations Center
Division of Resource Services

Hyperspectral Remote Sensing

- Images in 100s of very narrow wavelength
- Much finer discrimination of resources
- Examples:
 - HyMap 126 bands across the wavelength region of 0.45 – 2.5 nm.
 - ARCHER Run by CAP
- Typical cost \$3.5k per 20 km line length with 5 m pixel size plus 5-7k for mobilization from Colorado.

We are Data Rich and Information Poor

Remote Sensing (POCs)

- Debra Dinville
 - Section Lead
- Russell Jackson
 - Leica SoftwareProducts
 - NAIP, NED
- Dave Kett
 - Aerial Photography Acquisition
 - TraditionalPhotogrammetricProcessing

- Matthew Bobo
 - Satellite Imagery
 - Image Processing
 - Other IP Software Products
- Neffra Matthews
 - Close RangePhotogrammetry
- Susan Goodman
 - Fire RelatedGeospatial Activities

Contact Information

Matthew Bobo

National Operations Center
Division of Resource Services (OC-534)
Denver Federal Center, Bldg. 50
P.O. Box 25047
Denver, CO 80225

Phone: 303-236-0721

Email: matthew_bobo@blm.gov

